Reference Library

Books

1. Kiel,J.L. The Cytotoxic Activity of Peroxidases, PhD Dissertation, Texas Tech Health Sciences Center, School of Medicine. University Microfilms (1981).

2.Kiel, J. L., Type-b Cytochromes: Sensors and Switches, CRC Press, Boca Raton, Florida, 1995.

3. Kiel, J. L, Notes from the Shadows, Amazon eBooks, 2012, 2015.

4. Kiel, J. L., PATHOGENIC ECOLOGY; Amazon eBooks, 2015.

5. Kiel, J. L., Nanowarfare: Breath of the Black Dragon, 2016.

6. Kiel, J. L., The Black Dragon Trilogy: Notes from the Shadows, Pathogenic Ecology, and Nanowarfare;
Amazon eBooks, 2018.

Articles

1. Gary E. Grajales-Reyes and Marco Colonna, Interferon responses in viral pneumonias.DOI: 10.1126/science.abd2208. August 7, 2020.

2. G. Wolff et al., A molecular pore spans the double membrane of the coronavirus replication organelle. Science 10.1126/science.abd3629 (2020).

3. Seungjae Lee, et al, Clinical Course and Molecular Viral Shedding Among Asymptomatic and Symptomatic Patients With SARS-CoV-2 Infection
in a Community Treatment Center in the Republic of Korea, JAMA Intern Med.doi:10.1001jamainternmed.2020.3862 Published online August 6, 2020.

4. D. Mathew et al., Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science 10.1126/science.abc8511 (2020).

5. Long, Q., Tang, X., Shi, Q. et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med (2020). https://doi.org/10.1038/s41591-020-0965-6.

6. Jeremy Samuel and Carlos del Rio, Assessment of Deaths From COVID-19 and From Seasonal Influenza. May 14, 2020. doi:10.1001/jamainternmed.2020.2306.

7. Ann Demogines, Michael Farzan, and Sara L. Sawyer, Evidence for ACE2-Utilizing Coronaviruses (CoVs) Related to Severe Acute Respiratory Syndrome CoV in Bats. J Virol. 2012 Jun; 86(11): 6350–6353. doi: 10.1128/JVI.00311-12PMCID: PMC3372174.

8. Susanna K.P. Lau, et al. Possible Bat Origin of Severe Acute Respiratory Syndrome Coronavirus 2. Emerging Infectious Diseases, http://www.cdc.gov/eid • Vol. 26, No. 7, July 2020.

9. Jeevan Malaiyan, et al, An update on the origin of SARS‐CoV‐2: Despite closest identity, bat (RaTG13) and pangolin derived coronaviruses varied in the critical binding site and O‐linked glycan residues – Malaiyan – – Journal of Medical Virology. 07 July 2020https://doi.org/10.1002/jmv.26261.

10. lin, X.; Chen, S. Major Concerns on the Identification of Bat Coronavirus Strain RaTG13 and Quality of Related Nature Paper. Preprints 2020, 2020060044 (doi: 10.20944/preprints202006.0044.v1).

11. Yue Li, et al. The divergence between SARS-CoV-2 and RaTG13 might be overestimated due to the extensive RNA modification. Future Virology, https://doi.org/10.2217/fvl-2020-0066, 24 April 2020.

12. Antoni G. Wrobel, et al. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nature Structural & Molecular Biology, Received: 13 June 2020; Accepted: 24 June 2020; Published on line 9 July 2020.

13. Boni, M.F., Lemey, P., Jiang, X. et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat Microbiol (2020). https://doi.org/10.1038/s41564-020-0771-4.

14. Qiong Zhou, et al. Interferon-α2b Treatment for COVID-19? Front.. Immunol., 15 May 2020. https://doi.org/10.3389/fimmu.2020.01061.

15. Thiruselvam Viswanathan, et al. Structural basis of RNA cap modification by SARS-CoV-2. NATURE COMMUNICATIONS (2020)11:3718. https://doi.org/10.1038/s41467-020-17496-8.

16. Stein-Zamir Chen , Abramson Nitza , Shoob Hanna , Libal Erez , Bitan Menachem , Cardash Tanya , Cayam Refael , Miskin Ian . A large COVID-19 outbreak in a high school 10 days after schools’ reopening, Israel, May 2020. Euro Surveill. 2020;25(29):pii=2001352. https://doi.org/10.2807/1560-7917.ES.2020.25.29.2001352.

17. Nicholas J. Matheson and Paul J. Lehner. How does SARS-CoV-2 cause COVID-19? Science 369 (6503), 510-511. DOI: 10.1126/science.abc6156. 31 JULY 2020, VOL 369, ISSUE 6503.

18. Lawrence O. Gostin, I. Glenn Cohen, Jeffrey P. Koplan. Universal Masking in the United States—-The Role of Mandates, Health Education, and the CDC. August 10, 2020. doi:10.1001/jama.2020.15271.

19. Fischer et al., Low-cost measurement of facemask efficacy for filtering expelled droplets during speech. Sci. Adv. 10.1126/sciadv.abd3083 (2020).

20. Nicola E. Clarke and Anthony J. Turner. Review Article: Angiotensin-Converting Enzyme 2: The First Decade. International Journal of Hypertension, Volume 2012, Article ID 307315, 12 pages doi:10.1155/2012/307315.

21. Lizhou Zhang et al. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. https://www.scripps.edu/news-and-events/press-room/2020/20200611-choe-farzan-sars-cov-2-spike-protein.html.

22. Michael Letko, Andrea Marzi, and Vincent Munster. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses, Nature Microbiology, VOL 5, March 2020, 562–569. http://www.nature.com/naturemicrobiology.

23. Rebecca Unsworth et al. New-Onset Type 1 Diabetes in Children During COVID-19: Multicenter Regional Findings in U.K. Diabetes Care Published Ahead of Print, published online August 17, 2020, https://doi.org/10.2337/dc20-1551.

24. Roland R. Netz. Mechanisms of Airborne Infection via Evaporating and Sedimenting Droplets Produced by Speaking. J. Phys. Chem. B 2020, 124, 33, 7093–7101. Publication Date:July 15, 2020, https://doi.org/10.1021/acs.jpcb.0c05229.

25. Akira Tsuda, Frank S. Henry, and James P. Butler. Particle transport and deposition: basic physics of particle kinetics. Compr Physiol. 2013 October ; 3(4): 1437–1471. doi:10.1002/cphy.c100085.

26. Atyeo et al. Distinct Early Serological Signatures Track with SARS-CoV-2 Survival, 2020, Immunity 53, 1–9, October 13, 2020, Published by July 2020. https://doi.org/10.1016/j.immuni.2020.07.020.

27. Eleanor J. Molloy and Cynthia F. Bearer. COVID-19 in children and altered inflammatory responses. Pediatric Research, https://www.nature.com/articles/s41390-020-0881-y.pdf. Published on line 3 April 2020.

28. Kaneko, N., Kuo, H.-H., Boucau, J., Farmer, J.R., Allard-Chamard, H., Mahajan, V.S., Piechocka-Trocha, A., Lefteri, K., Osborn, M., Bals, J., Bartsch, Y.C., Bonheur, N., Caradonna, T.M., Chevalier, J., Chowdhury, F., Diefenbach, T.J., Einkauf, K., Fallon, J., Feldman, J., Finn, K.K., Garcia-Broncano, P., Hartana, C.A., Hauser, B.M., Jiang, C., Kaplonek, P., Karpell,
M., Koscher, E.C., Lian, X., Liu, H., Liu, J., Ly, N.L., Michell, A.R., Rassadkina, Y., Seiger, K., Sessa, L., Shin, S., Singh, N., Sun, W., Sun, X., Ticheli, H.J., Waring, M.T., Zhu, A.L., Alter, G., Li, J.Z., Lingwood, D., Schmidt, A.G., Lichterfeld, M., Walker, B.D., Yu, X., Padera Jr., R.F., Pillai, S., and the Massachusetts Consortium on Pathogen Readiness Specimen Working Group, Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19, Cell (2020), doi: https://doi.org/10.1016/ j.cell.2020.08.025.

29. Adam G. Laing et al.A dynamic COVID-19 immune signature includes associations with poor prognosis. NATURE MEDICINE | http://www.nature.com/naturemedicine; 2020.

30. Jennifer H. Dufour, Michelle Dziejman, Michael T. Liu, Josephine H. Leung, Thomas E. Lane and Andrew D. Luster. IFN-γ-Inducible Protein 10 (IP-10; CXCL10)-Deficient Mice Reveal a Role for IP-10 in Effector T Cell Generation and Trafficking. J Immunol 2002; 168:3195-3204; doi: 10.4049/jimmunol.168.7.3195 http://www.jimmunol.org/content/168/7/3195.

31. Blanco-Melo et al., Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. 2020, Cell 181, 1036–1045 May 28, 2020 a 2020 Elsevier Inc. https://doi.org/10.1016/j.cell.2020.04.026.

32. Hadjadj et al., Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369, 718–724 (2020) 7 August 2020.

33. Michael R Garvin et al. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. Computational and Systems Biology, Human Biology and Medicine 2020. ;9:e59177. DOI: https://doi.org/10.7554/eLife.59177.

34. Charles D. Searles and David G. Harrison. The interaction of nitric oxide, bradykinin, and the angiotensin II type 2 receptor: lessons learned from transgenic mice. The Journal of Clinical Investigation, October 1999, Volume 104, Number 8.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC408867/.

35. Mahmoud Gheblawi, Kaiming Wang, […], and Gavin Y. Oudit.Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System. Circulation Research. 2020;126:1457–1475. DOI: 10.1161/CIRCRESAHA.120.317015.

36. Allen P. Kaplan, MD, Kusumam Joseph, PhD, and Michael Silverberg, PhD. Pathways for bradykinin formation and inflammatory disease.J Allergy Clin Immunol 2002;109:195-209.

37. P. Bastard et al., Auto-antibodies against type I IFNs in patients with life- threatening COVID-19. Science 10.1126/science.abd4585 (2020).

38. Clausen et al., 2020, SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell 183, 1–15 November 12, 2020 a 2020 Elsevier Inc. https://doi.org/10.1016/j.cell.2020.09.033.

39. Mann et al., Longitudinal immune profiling reveals key myeloid signatures associated with COVID-19. Sci. Immunol. 5, eabd6197 (2020) 17 September 2020.DOI: 10.1126/sciimmunol.abd6197.

40. Nguyen-Contant P, Embong AK, Kanagaiah P, Chaves FA, Yang H, Branche AR, Topham DJ, Sangster MY. 2020. S protein- reactive IgG and memory B cell production after human SARS-CoV-2 infection includes broad reactivity to the S2 subunit. mBio 11:e01991-20. https://doi.org/10.1128/mBio .01991-20.

41. Gregson; Watson; Orton; Haddrell; McCarthy; Finnie; et al. (2020): Comparing the Respirable Aerosol Concentrations and Particle Size Distributions Generated by Singing, Speaking and Breathing. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.12789221.v1.

42. Jason D. Goldman, MD, MPH, et al. Reinfection with SARS-CoV-2 and Failure of Humoral Immunity: a case report. medRxiv preprint doi: https://doi.org/10.1101/2020.09.22.20192443.this version posted September 25, 2020.

43. Riddell, S., Goldie, S., Hill, A. et al. The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virol J 17, 145 (2020). https://doi.org/10.1186/s12985-020-01418-7.

44. Gjika, E., Pal-Ghosh, S., Kirschner, M.E. et al. Combination therapy of cold atmospheric plasma (CAP) with temozolomide in the treatment of U87MG glioblastoma cells. Sci Rep 10, 16495 (2020). https://doi.org/10.1038/s41598-020-73457-7.

45. Robert Root-Bernstein. Possible Cross-Reactivity between SARS-CoV-2 Proteins, CRM197 and Proteins in Pneumococcal Vaccines May Protect Against Symptomatic SARS-CoV-2 Disease and Death. Vaccines 2020, 8, 559; doi:10.3390/vaccines8040559 http://www.mdpi.com/journal/vaccines. Received: 31 July 2020; Accepted: 16 September 2020; Published: 24 September 2020.

46. Nicolas Shiaelis et al. Virus detection and identification in minutes using single-particle imaging and deep learning.medRxiv preprint doi: https://doi.org/10.1101/2020.10.13.20212035.this version posted October 16, 2020.

47. Maomian Fan et al. Aptamer Selection Express: A Novel Method for Rapid Single-Step Selection and Sensing of Aptamers. Journal of Biomolecular Techniques, Vol 19, issue 5, December 2008.

48. Drew Weissman et al. D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization. https://doi.org/10.1101/2020.07.22.20159905.this version posted September 12, 2020.

49. A. S. Iyer et al. Persistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients. Sci. Immunol. 10.1126/sciimmunol.abe0367 (2020).

50. B. Isho et al., Sci. Immunol. 10.1126/sciimmunol.abe5511 (2020). Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients.

51. Ripperger, T.J., Uhrlaub, J.L., Watanabe, M., Wong, R., Castaneda, Y., Pizzato, H.A., Thompson, M.R., Bradshaw, C., Weinkauf, C.C., Bime, C., Erickson, H.L., Knox, K., Bixby, B., Parthasarathy, S., Chaudhary, S., Natt, B., Cristan, E., El Aini, T., Rischard, F., Campion, J., Chopra, M., Insel, M., Sam, A., Knepler, J.L., Capaldi, A.P., Spier, C.M., Dake, M.D., Edwards, T., Kaplan, M.E., Scott, S.J., Hypes, C., Mosier, J., Harris, D.T., LaFleur, B.J., Sprissler, R., Nikolich- Žugich, J., Bhattacharya, D., Orthogonal SARS-CoV-2 Serological Assays Enable Surveillance of Low Prevalence Communities and Reveal Durable Humoral Immunity., Immunity (2020), doi: https:// doi.org/10.1016/j.immuni.2020.10.004.

52. Daniel E Leisman et al. Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with
other inflammatory syndromes. http://www.thelancet.com/respiratory Published online October 16, 2020 https://doi.org/10.1016/S2213-2600(20)30404-5.

53. John Kalns,,1 Julie Scruggs, Nancy Millenbaugh,† Jeeva Vivekananda,† David Shealy,‡ Jeffrey Eggers,† and Johnathan Kiel†
*Davis Hyperbaric Laboratory and †Air Force Research Laboratory, Human Effectiveness Directorate, Brooks Air Force Base, Texas 78235-5252; and ‡Centocor Research, Malvern, Pennsylvania. TNF Receptor 1, IL-1 Receptor, and iNOS Genetic Knockout Mice Are Not Protected from Anthrax Infection. Biochemical and Biophysical Research Communications 292, 41–44 (2002) doi:10.1006/bbrc.2002.6626, available online at http://www.idealibrary.com.

54. Adam Taylor, Suan-Sin Foo, Roberto Bruzzone, Luan Vu Dinh, Nicholas J. C. King, Suresh Mahalingam. Fc receptors in antibody- dependent enhancement of viral infections. Immunological Reviews 2015, Vol. 268: 340–364.

55. Wan Beom Par et al. Virus Isolation from the First Patient with SARS-CoV-2 in Korea. J Korean Med Sci. 2020 Feb 24;35(7):e84 https://doi.org/10.3346/jkms.2020.35.e84 eISSN 1598-6357·pISSN 1011-8934. Brief Communication Infectious Diseases, Microbiology & Parasitology.

56. Azeneth Barrera-Sexauer, Principal Investigator Mark A. Sloan, Senior Scientist
Beverly S. Shaffer, Scientific Research Writer
Conceptual MindWorks, Inc. 9830 Colonnade Blvd., Suite 377 San Antonio, TX 78230-2209
Johnathan L Kiel, Senior Scientist
Human Effectiveness Directorate Biosciences and Protection Division Bioassessment and Biosurveillance Section Brooks City-Base, TX 78235. Establishment of Optimal Parameters for United States Air Force MCU-2/P Mask Sanitization Procedures to Effectively Neutralize Adenovirus Serotype 14. AFRL-RH-BR-TR-2010-XXXX. 15 September 2010 ;
Final Report for September 2009 to September 2010.

57. Jae-Sun Uhm et al. Patterns of viral clearance in the natural course of asymptomatic COVID-19: Comparison with symptomatic non-severe COVID-19. International Journal of Infectious Diseases 99 (2020) 279–285.

58. Yosuke Hirotsua et al. Comparison of automated SARS-CoV-2 antigen test for COVID-19 infection with quantitative RT-PCR using 313 nasopharyngeal swabs, including from seven serially followed International Journal of Infectious Diseases 99 (2020) 397–402.

59. Ana Marija Sola et al. Prevalence of SARS-CoV-2 Infection in Children Without Symptoms of Coronavirus Disease 2019. JAMA Pediatrics Published online August 25, 2020. jamapediatrics.com.

60. Lorena Portea et al. Evaluation of a novel antigen-based rapid detection test for the diagnosis of SARS-CoV-2 in
respiratory samples. International Journal of Infectious Diseases 99 (2020) 328–333.

61. Shuchi Anand et al. Prevalence of SARS-CoV-2 antibodies in a large nationwide sample of patients on dialysis in the USA: a cross-sectional study. Lancet 2020; 396: 1335–44.

62. Fred S. Lu et al. Estimating the Cumulative Incidence of COVID-19 in the United States Using Four Complementary Approaches. medRxiv preprint doi: https://doi.org/10.1101/2020.04.18.20070821.this version posted August 7, 2020.

63. Milad Raeiszadeh and Babak Adeli. A Critical Review on Ultraviolet Disinfection Systems against COVID- 19 Outbreak: Applicability, Validation, and Safety Considerations. ACS Photonics. https://dx.doi.org/10.1021/acsphotonics.0c01245.

64. Sloan, M.A., Vivekananda, J., Holwitt, E.A., and Kiel J.L. U.S. Patent 7,892,484. Methods and Compositions for Neutralizing Anthrax and Other Bioagents, 22 Feb 2011.

65. Margaret A. Liu. Review:
A Comparison of Plasmid DNA and mRNA as Vaccine Technologies. Vaccines 2019, 7, 37; doi:10.3390/vaccines7020037. http://www.mdpi.com/journal/vaccines.

66. Wolfgang W. Leitner, Han Ying, and Nicholas P. Restifo. DNA and RNA-based vaccines: principles, progress and prospects. Vaccine. 1999 December 10; 18(9-10): 765–777.

67. Fiona McQueen. A B cell explanation for autoimmune disease: the forbidden clone returns. Postgrad Med J 2012;88:226e233. doi:10.1136/postgradmedj-2011-130364.

68. Junying Yuan and Guido Kroemer. REVIEW: Alternative cell death mechanisms in development and beyond. GENES & DEVELOPMENT 24:2592–2602. 2010 by Cold Spring Harbor Laboratory Press ISSN 0890-9369/10; http://www.genesdev.org.

69. Maria K. Smatti et al. Review: Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses 2019, 11, 762; doi:10.3390/v11080762.

70. H W Snyder Jr, M C Singhal, E E Zuckerman, F R Jones, W D Hardy Jr. The feline oncornavirus-associated cell membrane antigen (FOCMA) is related to, but distinguishable from, FeLV-C gp70. Virology. 1983 Dec;131(2):315-27. doi: 10.1016/0042-6822(83)90500-7.

71. Hodik M, Anagandula M, Fuxe J, et al. Coxsackie–adenovirus receptor expression is enhanced in pancreas from patients with type 1 diabetes. BMJ Open Diabetes Research and Care 2016;4:e000219. doi:10.1136/bmjdrc-2016- 000219.

72. Anne-Katrin Pröbstel, Nicholas S. R. Sanderson and Tobias Derfuss. Review:
B Cells and Autoantibodies in Multiple Sclerosis. Int. J. Mol. Sci. 2015, 16, 16576-16592; doi:10.3390/ijms160716576.

73. Yu Zuo et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci. Transl. Med. 10.1126/scitranslmed.abd3876 (2020).

74. Matthew C. Woodruff et al. Clinically identifiable autoreactivity is common in severe SARS-CoV-2 Infection. medRxiv preprint doi: https://doi.org/10.1101/2020.10.21.20216192; this version posted October 28, 2020.

75. Quan-Hui Liu et al. Measurability of the epidemic reproduction number in data-driven contact networks. PNAS: December 11, 2018, vol. 115, no. 50, 12680–12685.

76. Reproduction number (R) and growth rate (r) of the COVID-19 epidemic in the UK: methods of estimation, data sources, causes of heterogeneity, and use as a guide in policy formulation. The Royal Society, 24 AUGUST 2020.

77. Tyler D.R. Vance and Jeffrey E. Lee. Primer: Virus and eukaryote fusogen superfamilies, Current Biology 30, R737–R758, July 6, 2020.

78. David E. Gordon et al. Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science 10.1126/science.abe9403 (2020).

79. Dankers W, Davelaar N, van Hamburg JP, van de Peppel J, Colin EM and Lubberts E (2019) Human Memory Th17 Cell Populations Change Into Anti-inflammatory Cells With Regulatory Capacity Upon Exposure to Active Vitamin D. Front. Immunol.10:1504. doi: 10.3389/fimmu.2019.01504.

80. Mandy J. McGeachy. Th17 memory cells: live long and proliferate. J. Leukoc. Biol. 94: 921–926; 2013.

81. Wu X, Tian J and Wang S (2018) Insight Into Non-Pathogenic Th17 Cells in Autoimmune Diseases. Front. Immunol.9:1112. doi: 10.3389/fimmu.2018.01112.

82. Rajamanickam Anuradha et al. Parasite antigen – specific regulation of Th1, Th2 and Th17 responses in Strongyloides stercoralis infection. J Immunol. 2015 September 1; 195(5): 2241–2250. doi:10.4049/jimmunol.1500745.

83. Cai CW, Blase JR, Zhang X, Eickhoff CS, Hoft DF. (2016) Th17 Cells Are More Protective Than Th1 Cells Against the Intracellular Parasite Trypanosoma cruzi. PLoS Pathog 12(10): e1005902. doi:10.1371/journal.ppat.1005902.

84. Steel N, Faniyi AA, Rahman S, Swietlik S, Czajkowska BI, Chan BT, et al. (2019) TGFβ- activation by dendritic cells drives Th17 induction and intestinal contractility and augments the expulsion of the parasite Trichinella spiralis in mice. PLoS Pathog 15(4): e1007657. https://doi.org/ 10.1371/journal.ppat.1007657.

85. José Francisco Zambrano-Zaragoza et al. Review Article: Th17 Cells in Autoimmune and Infectious Diseases. International Journal of Inflammation Volume 2014, Article ID 651503, 12 pages http://dx.doi.org/10.1155/2014/651503.

86. Garvin et al. Potentially adaptive SARS-CoV-2 mutations discovered with novel spatiotemporal and explainable AI models. Genome Biology (2020) 21:304 https://doi.org/10.1186/s13059-020-02191-0.

87. Sandra Isabel et al. Evolutionary and structural
analyses of SARS‐CoV‐2 D614G
spike protein mutation now documented worldwide. Scientific Reports 2020) 10:14031. https://doi.org/10.1038/s41598-020-70827-z.

88. Hie et al. Learning the language of viral evolution and escape. Science 371, 284–288 (2021),
15 January 2021.

89. Emanuele Rizzo. Ivermectin, antiviral properties and COVID-19: a possible new mechanism of action. Naunyn-Schmiedeberg’s Archives of Pharmacology
https://doi.org/10.1007/s00210-020-01902-5.

90. Fatemeh Heidary and Reza Gharebaghi. Ivermectin: a systematic review from antiviral effects to COVID-19 complementary regimen. The Journal of Antibiotics (2020) 73:593–602 https://doi.org/10.1038/s41429-020-0336-z.

91. Giovanni Bocci et al. Virtual and In Vitro Antiviral Screening Revive Therapeutic Drugs for COVID-19. ACS Pharmacol. Transl. Sci. 2020, 3, 6, 1278–1292; publication date: October 14, 2020, https://doi.org/10.1021/acsptsci.0c00131.

92. Takehiro Takahashi and Akiko Iwasaki. Sex differences in immune responses. Science 371 (6527), 347-348. DOI: 10.1126/science.abe7199.

93. Stephen Keddie et al. Epidemiological and cohort study finds no association between COVID-19 and Guillain-Barré syndrome. Brain, awaa433, https://doi.org/10.1093/brain/awaa433. Published 14 December 2020.

94. Chunfang Gu, Ling Wu, and Xiaoxia Li. IL-17 family: cytokines, receptors and signaling. Cytokine. 2013 November ; 64(2): . doi:10.1016/j.cyto.2013.07.022.

95. Sarah L. Gaffen. Structure and signalling in the IL-17 receptor superfamily. Nat Rev Immunol. 2009 August ; 9(8): 556. doi:10.1038/nri2586.

96. Vitor Caiaffo et al. Anti-inflammatory, antiapoptotic, and antioxidant activity of fluoxetine. Pharma Res Per, 4(3), 2016, e00231, doi:10.1002/prp2.231.

97. Dorian A. Rosen et al. Modulation of the sigma-1 receptor–IRE1 pathway is beneficial in preclinical models of inflammation and sepsis. Sci. Transl. Med. 11, eaau5266 (2019) 6 February 2019.

98. Eric J. Lenze et al. Fluvoxamine vs Placebo and Clinical Deterioration in Outpatients With Symptomatic COVID-19: A Randomized Clinical Trial. JAMA. 2020;324(22):2292-2300. doi:10.1001/jama.2020.22760 Published online November 12, 2020.

99. Aaron T. Irving et al. Lessons from the host defences of bats, a unique viral reservoir. Nature, Vol 589, 21 January 2021, 363-370.

100. Bingtai Lu et al. IL-17 production by tissue-resident MAIT cells is locally induced in children with pneumonia. Mucosal Immunology (2020) 13:824–835; https://doi.org/10.1038/s41385-020-0273-y.

101. Nicholas N. Jarjour, David Masopust, Stephen C. Jameson. Primer: T Cell Memory: Understanding COVID-19. https://doi.org/10.1016/j.immuni.2020.12.009.

102. Starr et al., Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science 371, 850–854 (2021), 19 February 2021.

103. Eduardo López-Medina et al. Effect of Ivermectin on Time to Resolution of Symptoms Among Adults With Mild COVID-19. A Randomized Clinical Trial. JAMA. doi:10.1001/jama.2021.3071 Published online March 4, 2021.

104. Asha Kumari Patel et al. Inhaled Nanoformulated mRNA Polyplexes for Protein Production in Lung Epithelium. Adv Mater. 2019 February ; 31(8): e1805116. doi:10.1002/adma.201805116.

105. Emmeline L. Blanchard et al. Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nature Biotechnology.. http://www.nature.com/naturebiotechnology. Received: 27 April 2020; Accepted: 18 December 2020; Published on line 3 February 2021.

106. Shang-Chuen Wu et al. The SARS-CoV-2 receptor-binding domain preferentially recognizes blood group A (Type 1). Blood Advances: 9 MARCH 2021, VOLUME 5, NUMBER 5, 1305-1309.

107. Ria R. Ghai et al. Animal Reservoirs and Hosts for Emerging Alphacoronaviruses and Betacoronaviruses. Emerging Infectious Diseases. http://www.cdc.gov/eid ,Vol. 27, No. 4, April 2021.

108. Andreas Greinacher et al. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. April 9, 2021, at NEJM.org.
DOI: 10.1056/NEJMoa2104840.

109. Nina H. Schultz et al. Thrombosis and Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination. April 9, 2021, at NEJM.org.
DOI: 10.1056/NEJMoa2104882.

110. Gaurav Kistanguri, M.D. and Keith R. McCrae, M.D. Immune Thrombocytopenia. Hematol Oncol Clin North Am. 2013 June ; 27(3): 495–520. doi:10.1016/j.hoc.2013.03.001.

111. Bingyu Yan et al. SARS-CoV-2 drives JAK1/2-dependent local complement hyperactivation. Sci. Immunol. 10.1126/sciimmunol.abg0833 (2021).

112. Motomu Hashimoto et al. Complement drives Th17 cell differentiation and triggers autoimmune arthritis. JEM, VOL. 207, 1135-1143,June 7, 2010.

113. Vahid Afshar-Kharghan. Complement and clot. BLOOD, 20 APRIL 2017, VOLUME 129, NUMBER 16. DOI 10.1182/blood-2017-03-771501.

114. Umme Amara et al. Interaction Between the Coagulation and Complement System. Adv Exp Med Biol. 2008 ; 632: 71–79.

115. E. Cornelissen et al. Absence of antibody-dependent, complement-mediated lysis of feline infectious peritonitis virus-infected cells. Virus Research 144 (2009) 285–289.

116. Niels C. Pedersen. Review:
An update on feline infectious peritonitis: Virology and immunopathogenesis. The Veterinary Journal 201 (2014) 123–132.

117. Trisha Greenhalgh et al. Ten scientific reasons in support of airborne transmission of SARS-CoV-2. http://www.thelancet.com. Published online April 15, 2021. https://doi.org/10.1016/S0140-6736(21)00869-2.

118. Victoria Furer et al. Herpes zoster following BNT162b2 mRNA Covid-19 vaccination in patients with autoimmune inflammatory rheumatic diseases: a case series. Rheumatology, 2021;, keab345, https://doi.org/10.1093/rheumatology/keab345.

119. G. Doria-Torra, B. Vidan, A. Ramis, S. P. Amarilla, and J. MartInez. Coronavirus Infection in Ferrets: Antigen Distribution and Inflammatory Response.Veterinary Pathology 2016, Vol. 53(6) 1180-1186.

120. Wen Shi Lee, Adam K. Wheatley, Stephen J. Kent and Brandon J. DeKosky. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nature Microbiology: VOL 5, OCTOBER 2020, 1185–1191. http://www.nature.com/naturemicrobiology.

121. Ziegler et al., 2021, Impaired local intrinsic immunity to SARS-CoV-2 infection in severe COVID-19, Cell 184, 1–21, September 2, 2021, Published by Elsevier Inc. https://doi.org/10.1016/j.cell.2021.07.023.

122. Günalp Uzun, Karina Althaus, and Tamam Bakchoul, No Correlation between Anti-PF4 and Anti–SARS-CoV-2 Antibodies after ChAdOx1 nCoV-19 Vaccination, The New England Journal of Medicine, August 25, 202, DOI: 10.1056/NEJMc2111305.

123. Spyros Lytras, Wei Xia, Joseph Hughes, Xiaowei Jiang and David L. Robertson, The animal origin of SARS-CoV-2, Science 373 (6558), 968-970.
DOI: 10.1126/science.abh0117originally published online August 17, 2021.

124. Rita Rubin, MA, Trying to Block SARS-CoV-2 Transmission With Intranasal Vaccines. JAMA Published online October 14, 2021. E1.

125. Lavine et al., immunological characteristics govern the transitionof COVID-19 to endemicity Science 371, 741–745 (2021) 12 February 2021.

126. Lael M. Yonke et al. Virologic features of SARS-CoV-2 infection in children. Published by Oxford University Press for the Infectious Diseases Society of America. https://academic.oup.com/jid/advance-article/doi/10.1093/infdis/jiab509/6396772 by guest on 16 October 2021.

127. Peter Nordström, MD, PhD; Marcel Ballin, MSc; Anna Nordström, MD, PhD. Association Between Risk of COVID-19 Infection in Nonimmune Individuals and COVID-19 Immunity in Their Family Members. AMA Internal Medicine Published online October 11, 2021. https://jamanetwork.com/ on 10/18/2021.

128. Jussipekka Salo et al. The indirect effect of mRNA-based Covid-19 vaccination on
unvaccinated household members. medRxiv preprint doi: https://doi.org/10.1101/2021.05.27.21257896; this version posted May 29, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

129. WHO EMRO | Zoonotic disease: emerging public health threats in the Region | RC61 | À propos de l’OMS. http://www.emro.who.int/fr/about-who/rc61/zoonotic-diseases.html.

130. Jones KE, Patel N, Levy M, et al. Global trends in emerging infectious diseases. Nature 2008; 451:990-94.

131. Charles F. Schuler, IV et al. Mild SARS-CoV-2 Illness Is Not Associated with Reinfections and Provides Persistent Spike, Nucleocapsid, and Virus-Neutralizing Antibodies. Microbiol Spectr 9:e00087-21. https://doi.org/10.1128/Spectrum.00087-21.

132. Aziz Sheikh, Chris Robertson, and Bob Taylor, BNT162b2 and ChAdOx1 nCoV-19 Vaccine Effectiveness against Death from the Delta Variant. https://www.nejm.org/doi/pdf/10.1056/NEJMc2113864?articleTools=true.

133. Courtney Temple, Ruby Hoang, Robert G. Hendrickson, Toxic Effects from Ivermectin Use Associated with Prevention and Treatment of Covid-19. https://www.nejm.org/doi/pdf/10.1056/NEJMc2114907?articleTools=true.

134. Maria C. Magnus, Håkon K. Gjessing, Helena N. Eide, Allen J. Wilcox, Deshayne B. Fell, and Siri E. Håberg, Covid-19 Vaccination during Pregnancy and First-Trimester Miscarriage. https://www.nejm.org/doi/pdf/10.1056/NEJMc2114466?articleTools=true.

135. Ben Y. Reis, Noam Barda, Michael Leshchinsky,
Eldad Kepten, Miguel A. Hernán, Marc Lipsitch, Noa Dagan, Ran D. Balicer, Effectiveness of BNT162b2 Vaccine against Delta Variant in Adolescents. https://www.nejm.org/doi/pdf/10.1056/NEJMc2114290?articleTools=true.

136. Mi Seon Han et al, Clinical Characteristics and Viral RNA Detection in Children With Coronavirus Disease 2019 in the Republic of Korea. JAMA Pediatrics, January 2021, Volume 175, Number 1. 74-80.

137. Smriti Mallapaty, KIDS AND COVID: WHY YOUNG IMMUNE SYSTEMS ARE STILL ON TOP, Nature : Vol 597, 9 September 2021, 166-168.

138. Anika Singanayagam et al, Community transmission and viral load kinetics of the SARS-CoV-2 delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK: a prospective, longitudinal, cohort study. http://www.thelancet.com/infection Published online October 28, 2021 https://doi.org/10.1016/S1473-3099(21)00648-4.

139. Jennifer Abbasi, The Flawed Science of Antibody Testing for SARS-CoV-2 Immunity. JAMA Published online October 21, 2021.

140. Dean Follmann et al, Phase 3 Trial of mRNA-1273 during the Delta-Variant Surge. The New England Journal of Medicine 2021. DOI: 10.1056/NEJMc2115597.

141. Keiya Uriu et al, Neutralization of the SARS-CoV-2 Mu Variant by Convalescent and Vaccine Serum. The New England Journal of Medicine, 2021. DOI: 10.1056/NEJMc2114706 .

142. Anita Slomski, Trials Test Mushrooms and Herbs as Anti–COVID-19 Agents. JAMA Published online November 3, 2021.

143. Colonel Guo Ji-wei, The People’s Liberation Army, China, and Xue-sen Yang, Ultramicro, Nonlethal, and Reversible: Looking Ahead to Military Biotechnology. MILITARY REVIEW, July-August 2005, 75-79.

144. Jesper Larsen et al., Emergence of methicillin resistance predates the clinical use of antibiotics. Nature: http://www.nature.com. https://doi.org/10.1038/s41586-021-04265-w; Received: 12 May 2021;
Accepted: 18 November 2021;
Published online 5 Jan 2022; Open access.

145. Giancarlo R. Valiente et al., Gut dysbiosis is associated with acceleration of lupus nephritis. Scientific Reports : (2022) 12:152. https://doi.org/10.1038/s41598-021-03886-5. https://www.nature.com/articles/s41598-021-03886-5.pdf.

146. Anthony Fernández-Castañeda et al., Mild respiratory SARS-CoV-2 infection can cause multi-lineage cellular dysregulation and myelin loss in the brain. bioRxiv preprint doi: https://doi.org/10.1101/2022.01.07.475453; this version posted January 10, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. https://www.biorxiv.org/content/10.1101/2022.01.07.475453v1.full.pdf.